自旋锁的洋名叫spin lock,是一种比较有个性的锁,因为它站在传统的互斥锁的对立面。如果并发时,互斥锁的做法是让线程阻塞,但自旋锁却不这么做,而是原地打转,不停的去抢锁,抢不到誓不罢休。简而言之,互斥锁是重量级(悲观)锁,自旋锁是轻量级(乐观)锁。自旋锁使用场景是:1、多核处理器,2、线程等待锁的时间很短,短到比线程两次上下文切换时间还少,说白了就是锁里操作的事情很简单。
如何实现自旋锁呢?惟有CAS。何谓CAS?它的洋名叫Compare And Swap,简单来说就是比较并交换。该算法涉及三个数:内存值V,旧的预期值A,新的预期值B。当且仅当旧的预期值A和内存值V相同时,将内存值改为B,否则什么也不做。
CAS 是实现自旋锁的基础(也是实现乐观锁的基础),CAS 利用 CPU 指令保证了操作的原子性,以达到锁的效果。先看个JDK实例:
public class CountDownLatch { /** * Synchronization control For CountDownLatch. * Uses AQS state to represent count. */ private static final class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 4982264981922014374L; Sync(int count) { setState(count); } int getCount() { return getState(); } protected int tryAcquireShared(int acquires) { return (getState() == 0) ? 1 : -1; } protected boolean tryReleaseShared(int releases) { // Decrement count; signal when transition to zero for (;;) { int c = getState(); if (c == 0) return false; int nextc = c-1; if (compareAndSetState(c, nextc)) return nextc == 0; } } } private final Sync sync; /** * Constructs a { @code CountDownLatch} initialized with the given count. * * @param count the number of times { @link #countDown} must be invoked * before threads can pass through { @link #await} * @throws IllegalArgumentException if { @code count} is negative */ public CountDownLatch(int count) { if (count < 0) throw new IllegalArgumentException("count < 0"); this.sync = new Sync(count); } /** * Causes the current thread to wait until the latch has counted down to * zero, unless the thread is { @linkplain Thread#interrupt interrupted}. * *If the current count is zero then this method returns immediately. * *
If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of two things happen: *
- *
- The count reaches zero due to invocations of the * { @link #countDown} method; or *
- Some other thread { @linkplain Thread#interrupt interrupts} * the current thread. *
If the current thread: *
- *
- has its interrupted status set on entry to this method; or *
- is { @linkplain Thread#interrupt interrupted} while waiting, *
If the current count is zero then this method returns immediately * with the value {
@code true}. * *If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of three things happen: *
- *
- The count reaches zero due to invocations of the * { @link #countDown} method; or *
- Some other thread { @linkplain Thread#interrupt interrupts} * the current thread; or *
- The specified waiting time elapses. *
If the count reaches zero then the method returns with the * value {
@code true}. * *If the current thread: *
- *
- has its interrupted status set on entry to this method; or *
- is { @linkplain Thread#interrupt interrupted} while waiting, *
If the specified waiting time elapses then the value {
@code false} * is returned. If the time is less than or equal to zero, the method * will not wait at all. * * @param timeout the maximum time to wait * @param unit the time unit of the { @code timeout} argument * @return { @code true} if the count reached zero and { @code false} * if the waiting time elapsed before the count reached zero * @throws InterruptedException if the current thread is interrupted * while waiting */ public boolean await(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } /** * Decrements the count of the latch, releasing all waiting threads if * the count reaches zero. * *If the current count is greater than zero then it is decremented. * If the new count is zero then all waiting threads are re-enabled for * thread scheduling purposes. * *
If the current count equals zero then nothing happens. */ public void countDown() { sync.releaseShared(1); } /** * Returns the current count. * *
This method is typically used for debugging and testing purposes. * * @return the current count */ public long getCount() { return sync.getCount(); } /** * Returns a string identifying this latch, as well as its state. * The state, in brackets, includes the String {
@code "Count ="} * followed by the current count. * * @return a string identifying this latch, as well as its state */ public String toString() { return super.toString() + "[Count = " + sync.getCount() + "]"; }}看上面标红那里,就是自旋锁实现的关键:1、无限循环;2、CAS。接下来再看自旋锁的实现与应用场景:
package com.wulinfeng.test.testpilling.util;import java.util.concurrent.TimeUnit;import java.util.concurrent.atomic.AtomicBoolean;import java.util.concurrent.locks.Condition;import java.util.concurrent.locks.Lock;/** * 自旋锁 * * @author wulinfeng * @version C10 2018年12月21日 * @since SDP V300R003C10 */public class SpinLock implements Lock{ // 利用AtomicBoolean来调用CAS,ab初始(内存)值是false private AtomicBoolean ab = new AtomicBoolean(false); @Override public void lock() { /* * getAndSet将ab设置为true,并返回ab之前(内存)的值。 * 因为ab的初始(内存)值就是false,所以第一个线程不会进入循环,也就是说它抢到了锁 * 而后面的线程来的时候,内存值已经是true,将进入循环自旋 */ while (ab.getAndSet(true)) { } } @Override public void unlock() { // 将内存值重新设置为false ab.set(false); } @Override public void lockInterruptibly() throws InterruptedException { // TODO Auto-generated method stub } @Override public boolean tryLock() { // TODO Auto-generated method stub return false; } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { // TODO Auto-generated method stub return false; } @Override public Condition newCondition() { // TODO Auto-generated method stub return null; } }
测试代码:
package com.wulinfeng.test.testpilling;import java.util.concurrent.CountDownLatch;import org.junit.After;import org.junit.Before;import org.junit.Test;import com.wulinfeng.test.testpilling.util.SpinLock;import junit.framework.TestCase;public class SpinLockTest{ // 开始时间 private long startTime = 0L; // 计数器 private int count = 0; // 让Junit支持多线程,10个线程就先初始化10 private CountDownLatch latch = new CountDownLatch(10); @Before public void before() { startTime = System.currentTimeMillis(); } @After public void after() { System.out.printf("count值:%d, 耗时:%d毫秒.\n", count, System.currentTimeMillis() - startTime); } @Test public void testSpinLock() { // 初始化自旋锁 SpinLock sl = new SpinLock(); for (int i = 0; i < 10; i++) { new Thread(new Runnable() { @Override public void run() { for (int j = 0; j < 1000; j++) { // 加锁 sl.lock(); // 自增 count++; // 解锁 sl.unlock(); } // 一个线程执行完了就减1,10个线程执行完了就变成0,执行主线程 latch.countDown(); } }).start(); } // 主线程等待 try { latch.await(); } catch (InterruptedException e) { e.printStackTrace(); } TestCase.assertEquals(count, 10000); }}
输出结果:
count值:10000, 耗时:9毫秒.